

Pergamon Tetrahedron Letters 42 (2001) 1187–1191

TETRAHEDRON LETTERS

Remote 1,5-stereoinduction in boron aldol reactions of methyl ketones: application to the convergent assembly of the 1,3-polyol sequence of (+)-roxaticin

Ian Paterson* and Lynne A. Collett

University Chemical Laboratory, *Lensfield Road*, *Cambridge CB*² 1*EW*, *UK* Received 9 November 2000; accepted 29 November 2000

Abstract—By exploiting 1,5-*anti* stereoinduction in the boron aldol coupling of the b-alkoxy methyl ketones **6** and **8** with aldehydes **7** and **9**, the convergent synthesis of **2**, corresponding to the fully protected polyol sequence of the 30-membered macrolide, (+)-roxaticin (**1**), was achieved in an efficient manner (15 steps and 24.0% yield from ketone **15**). © 2001 Elsevier Science Ltd. All rights reserved.

As potent antifungal agents, the polyene macrolides constitute an important class of polyketide metabolites.¹ Their highly oxygenated structures have stimulated synthetic efforts towards the development of general approaches to the asymmetric construction of stereodefined 1,3-polyols.² In the case of roxaticin (1), a 30-membered macrolide first isolated from a cultured soil streptomycete by Maehr et al. at Roche in 1989,³ total syntheses have been completed by the Rychnovsky (*ent*-**1**) and Mori groups.4 By using boron aldol reactions⁵ for achieving remote acyclic stereocontrol, we now report an expedient synthesis of the $C_{10}-C_{29}$ subunit **2**, which comprises the full 1,3-polyol sequence of (+)-roxaticin containing all ten stereocentres.

The boron-mediated aldol reaction of chiral ketones is now well established as a powerful tool for polyketide synthesis. However, due to the lower stereoselectivities observed in the aldol reactions of methyl versus ethyl ketones, application to acetate-derived polyketides usually requires reagent control using chiral ligands on boron.⁵ A notable exception is the aldol reaction of certain b-alkoxy methyl ketones with aldehydes, as in $3 \rightarrow 4 \rightarrow 5$ in Scheme 1, which are found to proceed with remarkably high levels of 1,5-*anti* stereoinduction under substrate control.^{6,7} Access to stereodefined 1,3,5-triol sequences,⁶ as found in the polyene macrolides, can then be realised by suitable reduction (3,5-*syn* or *anti*) of the β -hydroxy ketones **5**.

Keywords: roxaticin; boron aldol; macrolide; antifungal; remote stereoinduction. * Corresponding author. Fax: +44 1223 336362; e-mail: ip100@cus.cam.ac.uk

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)02205-X

A convergent synthesis of the 1,3-polyol subunit **2** for (+)-roxaticin was planned, following the route outlined in Scheme 1. The pivotal 1,5-*anti* aldol reaction was intended to be used twice, i.e. for the coupling of the simpler fragments **6** with **7** and **8** with **9**. To ensure a useful level of 1,5-stereoinduction, suitable protecting groups, such as PMB (by analogy with 3), for the C_{15} and C_{21} hydroxyls were incorporated into the methyl ketones **6** and **8**, respectively. Following our synthetic studies on spongistatin, we planned to prepare the methyl ketone **6** using a 1,3-*syn* aldol reaction of acetone with the β -siloxy aldehyde 10.^{6b}

The preparation of the three key subunits **6**, **8** and **9** is outlined in Scheme 2.8 Following standard conditions,^{9a,b} the boron aldol reaction (c -Hex₂BCl, Me₂NEt) of the lactate-derived^{9b} ketone **11** with 3-(benzyloxy)propanal proceeded with $\geq 97\%$ ds, giving the *anti* adduct **12** (88%). Protection as a TIPS ether, followed by $LiAlH₄$ reduction and oxidative glycol cleavage with $Pb(OAc)₄$ then gave 13 (86%). Next, the vinyl iodide was introduced (*E*:*Z*=96:4) by Takai olefination¹⁰ using CHI₃ and CrCl₂, followed by debenzylation $(BCl_3 \cdot SMe_2)^{11}$ and Dess-Martin oxidation to produce aldehyde **10** (67% from **13**). Using $(-)$ -Ipc₂BCl and $Et_3N₁¹²$ the aldol addition of acetone to 10 proceeded with $\geq 97\%$ ds to give 1,3-*syn* adduct 14 (99%). As expected,^{6b} the moderate 1,3-stereoinduction from the β -siloxy aldehyde 10 is reinforced here by the chiral boron reagent. Protection as the PMB ether then gave

the required $C_{10}-C_{18}$ subunit **6** (80%). The enal **9**, incorporating $C_{25}-C_{29}$, was obtained using the complementary *syn* aldol chemistry^{9a,c} of the ketone 15, having a benzyl ether in place of the benzoate. Thus, the *syn*-configured aldehyde **16** was readily prepared from the aldol adduct 17 , followed by chain extension^{4a} to produce 9 (91%). The final $C_{19}-C_{24}$ subunit, i.e. methyl ketone **8**, was obtained in 95% ee by Brown allyboration of aldehyde **18** using *B*-allylbis(2-isocaranyl)borane,¹³ followed by PMB protection and Wacker oxidation of the alkene.

The controlled aldol coupling of the three subunits, followed by suitable manipulation was now addressed. In the first 1,5-*anti* coupling step between equimolar amounts of $\bf{8}$ and $\bf{9}$ (Scheme 3), use of c -Hex₂BCl and $Et₃N$ led, after oxidative work-up, to the adduct 19 with 95% ds in 86% yield. By combining this step with an in situ reduction $6a,14$ of the intermediate dicyclohexylboron aldolate using LiBH₄, the C₂₃ and C₂₅ stereocentres could be introduced efficiently, generating the 1,3-*syn* diol **20** (95% ds) in 90% yield. The C_{25} configuration was established as (R) by ¹H NMR spectroscopy (through use of the advanced Mosher method¹⁵ on the (R) - and (S) -MTPA esters of 19), while that at C_{25} was determined in turn by ¹³C NMR analysis16 of the acetonide **21**. Selective deprotection of the primary TBS ether in **21** with TBAF was then followed by Swern oxidation to give aldehyde **7** (93%).

Scheme 1. Retrosynthetic analysis based on identification of 1,5-*anti* stereorelationships in **2**.

I. *Paterson*, *L*. *A*. *Collett* / *Tetrahedron Letters* ⁴² (2001) 1187–1191 1189

Scheme 2. Reagents and conditions: (a) c -Hex₂BCl, Me₂NEt, Et₂O, 0°C, 2 h; BnOCH₂CH₂CHO, −78→−20°C, 16 h; H₂O₂, MeOH, pH 7 buffer; (b) TIPSOTf, 2,6-lutidine, CH₂Cl₂, $-78\rightarrow0$ °C, 3 h; (c) LiAlH₄, $-78\rightarrow0$ °C, 3 h; (d) Pb(OAc)₄, Na₂CO₃, CH_2Cl_2 , 0.5 h; (e) CHI₃, CrCl₂, THF, dioxane, 8 h; (f) BCl₃·SMe₂, CH₂Cl₂, 45 min; (g) Dess-Martin periodinane, CH₂Cl₂, 1–3 h; (h) Me₂CO, (−)-Ipc₂BCl, Et₃N, Et₂O, 0°C, 35 min; 10, -78°C, 1 h; H₂O₂, MeOH, pH 7 buffer; (i) PMB–TCA, cat TfOH, Et₂O, 0°C, 3 h; (j) *c*-Hex₂BCl, Et₃N, Et₂O, −78→0°C, 80 min; *i*-PrCHO, −78→20°C, 16 h; H₂O₂, MeOH, pH 7 buffer; (k) TBSOTf, 2,6-lutidine, CH₂Cl₂, −78°C, 1 h; (l) H₂, Pd(OH)₂/C, EtOAc, 1 h; (m) NaIO₄, aq. MeOH, 40 min; (n) Ph₃P=CHCO₂Me, MeCN, 84°C, 20 h; (o) DIBAL, Et₂O, −78→20°C, 1.5 h; (p) (2-^dIcr)₂Ballyl, Et₂O, −78°C, 3 h; H₂O₂, NaOH; (q) PMB–TCA, Ph₃CBF₄,THF, 0°C, 16 h; (r) PdCl₂, CuCl, O₂, aq. DMF, 25 h.

Scheme 3. Reagents and conditions: (a) c -Hex₂BCl, Et₃N, Et₂O, 0°C, 10 min; **9**, $-78 \rightarrow -20$ °C, 18 h; H₂O₂, MeOH, pH 7 buffer; (b) *c*-Hex₂BCl, Et₃N, Et₂O, 0°C, 10 min; **9**, -78→-20°C, 18 h; LiBH₄, 2 h; H₂O₂, MeOH, pH 7 buffer; (c) (MeO)₂CMe₂, PPTS, CH₂Cl₂, 16 h; (d) TBAF, THF, 1.5 h; (e) (COCl)₂, DMSO, CH₂Cl₂, −78°C, 30 min; Et₃N, −78 → 0°C, 1 h.

In the more challenging, second 1,5-*anti* aldol coupling (Scheme 4), enolisation of ketone 6 with c -Hex₂BCl and $Et₃N$, followed by addition of aldehyde 7, gave the desired adduct **22** (75% ds), along with 19-*epi*-**22**. After chromatographic separation, the major adduct **22** was isolated in 53% yield. By treatment of each of the aldol products with DDQ, the formation of the corresponding PMP acetals, with concomitant deprotection of the C_{15} PMB ether, was achieved.¹⁷ Subsequent NOE analysis of **23**, along with the 19-*epi* system **24**, enabled the unambiguous assignment of the C_{19} configuration arising from the aldol coupling. In the analogous reaction of methyl ketone **6** with the simple aldehyde **25**, the 1,5-*anti* adduct **26** was obtained in 69% ds, while aldehyde **7** showed low selectivity (61% ds) in reaction with the dicyclohexylboron enolate of acetone. Therefore, we attribute the moderate 75% ds achieved in the formation of **22** (cf. $9+10 \rightarrow 19$ in 95% ds) to a reduced level of 1,5-stereoinduction from the ketone component **6** (as opposed to a mismatched coupling situation). This may be a consequence of steric congestion, arising from the bulky C_{11} TIPS ether, adversely affecting the conforma-

Scheme 4. Reagents and conditions: (a) c -Hex₂BCl, Et₃N, Et₂O, 0°C, 10 min; **7** or **25**, $-78 \rightarrow -20$ °C, 16 h; H₂O₂, MeOH, pH 7 buffer; (b) DDQ, CH₂Cl₂, pH 7 buffer, 6 h; (*c*) Me₄NBH(OAc)₃, MeCN, AcOH, −30→20°C, 18 h; (d) (MeO)₂CMe₂, PPTS, $CH₂Cl₂$, 15 h.

tion of the stereodirecting PMB ether at C_{15} . In comparison, the corresponding lithium and Mukaiyama aldol reactions of **6** with **7** gave much poorer stereoselectivity for **22**.

Finally, a hydroxyl-directed reduction of aldol adduct **22**, employing $Me₄NBH(OAc)₃$ ¹⁸ led to the 1,3-*anti* diol **27** with 96% ds, which was transformed into the bis-acetonide **2**⁸ in 81% overall yield (allowing confirmation of the stereochemistry by 13 C NMR analysis¹⁶). This contains all ten stereocentres of the 1,3-polyol sequence of (+)-roxaticin, with a vinyl iodide appended at C_{10} for a subsequent Pd-mediated coupling to introduce the polyene unit and close the macrolide ring.

In summary, the asymmetric synthesis of bis-acetonide **2**, corresponding to the fully protected 1,3-polyol sequence for (+)-roxaticin (**1**) and containing all ten stereocentres, has been achieved in 15 steps and high overall yield (24.0%) from ketone **15** (three steps from ethyl (*S*)-lactate^{9a}). By exploiting the 1,5-*anti* boron aldol coupling protocol, a convergent synthesis using equimolar amounts of the individual subunits **6**, **8** and **9** was realised. Further studies are underway to explore the generality and origin of these, and other, remote induction effects in boron aldol reactions.19

Acknowledgements

We thank the EPSRC (GR/L41646), the Cambridge

Commonwealth Trust and Merck, Sharp & Dohme for support.

References

- 1. Omura, S.; Tanaka, H. In *Macrolide Antibiotics*; Omura, S., Ed.; Academic Press: Orlando, FL, 1984; pp. 351–396.
- 2. For recent reviews, see: (a) Oishi, T.; Nakata, T. *Synthesis* **1990**, 635. (b) Rychnovsky, S. D. *Chem*. *Rev*. **1995**, 95, 2021. (c) Schneider, C. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1998**, 37, 1375.
- 3. Maehr, H.; Yang, R.; Hong, L.-N.; Liu, C.-M.; Hatada, M. H.; Todaro, L. J. *J*. *Org*. *Chem*. **1989**, 54, 3816.
- 4. (a) Rychnovsky, S. D.; Hoye, R. C. *J*. *Am*. *Chem*. *Soc*. **1994**, 116, 1753; (b) Mori, Y.; Asai, M.; Okumura, A.; Furukawa, H. *Tetrahedron* **1995**, 51, 5299; (c) Mori, Y.; Asai, M.; Kawade, J.; Furukawa, H. *Tetrahedron* **1995**, 51, 5315.
- 5. For a review on asymmetric aldol reactions using boron enolates, see: Cowden, C. J.; Paterson, I. *Org*. *React*. **1997**, 51, 1.
- 6. (a) Paterson, I.; Gibson, K. R.; Oballa, R. M. *Tetrahedron Lett*. **1996**, 37, 8585; (b) Paterson, I.; Oballa, R. M.; Norcross, R. D. *Tetrahedron Lett*. **1996**, 37, 8581.
- 7. For a related study, see: Evans, D. A.; Coleman, P. J.; Coˆte´, B. *J*. *Org*. *Chem*. **1997**, 62, 788.
- 8. All new compounds gave spectroscopic data in agreement with the assigned structures. **2** had: $[\alpha]_D^{20}$ –22.5 (*c* 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (2H, d, *J*=8.6 Hz, ArH), 7.23 (2H, d, *J*=8.7 Hz, ArH), 6.88

(2H, d, *J*=8.6 Hz, ArH), 6.87 (2H, d, *J*=8.7 Hz, ArH), 6.53 (1H, dd, $J=14.5$, 8.5 Hz, H₁₁), 5.86 (1H, d, $J=14.5$ Hz, H₁₀), 5.64 (1H, dd, $J=15.6$, 8.0 Hz, H₂₇), 5.39 (1H, dd, $J=15.6$, 6.4 Hz, H₂₆), 4.50 (1H, d, $J=10.6$ Hz, OCH_AH_BAr), 4.47 (1H, d, $J=11.4$ Hz, OCH_AH_BAr), 4.46 (1H, d, $J=10.6$ Hz, OCH_AH_BAr), 4.28–4.34 (1H, m, H_{25}), 4.29 (1H, d, J=11.4 Hz, OCH_AH_BAr), 3.99–4.14 $(2H, m, H₁₅, H₂₃), 3.92-3.98$ (1H, m, H₂₁), 3.81-3.90 (1H, m, H_{13}), 3.80 (3H, s, OMe), 3.80 (3H, s, OMe), 3.75–3.82 $(H, m, H_{19}),$ 3.42–3.52 (1H, m, H₁₇), 3.27 (1H, dd, *J*=4.9, 4.9 Hz, H₂₉), 2.27–2.36 (1H, m, H₂₈), 2.10–2.18 $(1H, m, H_{12}), 1.88-1.96$ $(1H, m, H_{20A}), 1.70-1.80$ $(2H, m,$ $H_{20B}, H₃₀$, 1.25–1.70 (10H, m, H₁₄, H₁₆, H₁₈, H₂₂, H₂₄), 1.46 (3H, s, OC(Me)(Me)O), 1.42 (3H, s, OC(Me)(Me)O), 1.38 (3H, s, OC(Me)(Me)O), 1.36 (3H, s, OC(Me)(Me)O), 1.06 (21H, s, Si(C<u>HMe₂)₃)</u>, 1.06 (3H, d, *obscured*, C₁₂-Me), 0.98 (3H, d, J=6.8 Hz, C₂₈-Me), 0.91 (9H, s, SiC<u>Me₃</u>), 0.88 (3H, d, $J=6.9$ Hz, C₃₀-Me_A), 0.84 (3H, d, $J=6.7$ Hz, C₃₀-Me_B), 0.03 (6H, s, SiMe₂) ppm; ¹³C NMR $(100.6 \text{ MHz}, \text{CDCl}_3)$ δ 159.2, 159.1, 148.1, 136.2, 131.0, 130.8, 129.5, 129.4, 129.2, 113.9, 113.6, 100.2, 98.5, 80.9, 74.9, 72.3, 72.1, 71.9, 71.8, 70.2, 69.8, 65.2, 63.4, 63.3, 55.3 (×2), 44.7, 42.9, 42.3, 40.6 (×2), 40.2, 39.3, 37.7, 31.6, 30.4, 26.2 (×2), 25.2, 20.5, 20.0, 18.4, 18.3, 17.7, 16.6, 15.9, 12.9, −3.5, −3.8 ppm; HRMS (+ESI) calcd for $C_{62}H_{105}O_{10}NaSi_2I [M+Na]^+$ 1215.6183, found 1215.6091.

- 9. (a) Paterson, I.; Wallace, D. J.; Vela´zquez, S. M. *Tetrahedron Lett*. **1994**, 35, 9083; (b) Paterson, I.; Wallace, D. J.; Cowden, C. J. *Synthesis* **1998**, 639; (c) Paterson, I.; Wallace, D. J. *Tetrahedron Lett*. **1994**, 35, 9087.
- 10. Takai, K.; Nitta, K.; Utimoto, K. *J*. *Am*. *Chem*. *Soc*. **1986**, 108, 7408.
- 11. Congreve, M. S.; Davison, E. C.; Fuhry, M. A. M.; Holmes, A. B.; Payne, A. N.; Robinson, R. A.; Ward, S. E. *Synlett* **1993**, 663.
- 12. Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. *Tetrahedron* **1990**, 46, 4663.
- 13. Brown, H. C.; Randad, R. S.; Bhat, K. S.; Zaidlewicz, M.; Racherla, U. S. *J*. *Am*. *Chem*. *Soc*. **1990**, 112, 2389.
- 14. Paterson, I.; Perkins, M. V. *Tetrahedron* **1996**, 52, 1811.
- 15. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. *J*. *Am*. *Chem*. *Soc*. **1991**, 113, 4092.
- 16. Rychnovsky, S. D.; Rogers, B.; Yang, G. *J*. *Org*. *Chem*. **1993**, 58, 3511.
- 17. Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O. *Tetrahedron* **1986**, ⁴², 3021.
- 18. Evans, D. A.; Chapman, K. T.; Carreira, E. M. *J*. *Am*. *Chem*. *Soc*. **1988**, 110, 3560.
- 19. Paterson, I.; Florence, G. J. *Tetrahedron Lett*. **2000**, 41, 6935.