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Abstract—By exploiting 1,5-anti stereoinduction in the boron aldol coupling of the B-alkoxy methyl ketones 6 and 8 with
aldehydes 7 and 9, the convergent synthesis of 2, corresponding to the fully protected polyol sequence of the 30-membered
macrolide, (+)-roxaticin (1), was achieved in an efficient manner (15 steps and 24.0% yield from ketone 15). © 2001 Elsevier

Science Ltd. All rights reserved.

As potent antifungal agents, the polyene macrolides
constitute an important class of polyketide metabo-
lites.! Their highly oxygenated structures have stimu-
lated synthetic efforts towards the development of
general approaches to the asymmetric construction of
stereodefined 1,3-polyols.? In the case of roxaticin (1), a
30-membered macrolide first isolated from a cultured
soil streptomycete by Maehr et al. at Roche in 1989,
total syntheses have been completed by the Rychnovsky
(ent-1) and Mori groups.* By using boron aldol
reactions® for achieving remote acyclic stereocontrol,
we now report an expedient synthesis of the C,;;—Cyo
subunit 2, which comprises the full 1,3-polyol sequence
of (+)-roxaticin containing all ten stereocentres.

1: (+)-Roxaticin

The boron-mediated aldol reaction of chiral ketones is
now well established as a powerful tool for polyketide
synthesis. However, due to the lower stereoselectivities
observed in the aldol reactions of methyl versus ethyl
ketones, application to acetate-derived polyketides usu-
ally requires reagent control using chiral ligands on
boron.> A notable exception is the aldol reaction of
certain B-alkoxy methyl ketones with aldehydes, as in
3—4-5 in Scheme 1, which are found to proceed with
remarkably high levels of 1,5-anti stereoinduction under
substrate control.>” Access to stereodefined 1,3,5-triol
sequences,® as found in the polyene macrolides, can
then be realised by suitable reduction (3,5-syn or anti )
of the B-hydroxy ketones 5.
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A convergent synthesis of the 1,3-polyol subunit 2 for
(+)-roxaticin was planned, following the route outlined
in Scheme 1. The pivotal 1,5-anti aldol reaction was
intended to be used twice, i.e. for the coupling of the
simpler fragments 6 with 7 and 8 with 9. To ensure a
useful level of 1,5-stereoinduction, suitable protecting
groups, such as PMB (by analogy with 3), for the C,;
and C,, hydroxyls were incorporated into the methyl
ketones 6 and 8, respectively. Following our synthetic
studies on spongistatin, we planned to prepare the
methyl ketone 6 using a 1,3-syn aldol reaction of ace-
tone with the B-siloxy aldehyde 10.°®

The preparation of the three key subunits 6, 8 and 9 is
outlined in Scheme 2.® Following standard condi-
tions,’*® the boron aldol reaction (c-Hex,BCl,
Me,NEt) of the lactate-derived®® ketone 11 with 3-(ben-
zyloxy)propanal proceeded with >97% ds, giving the
anti adduct 12 (88%). Protection as a TIPS ether,
followed by LiAlH, reduction and oxidative glycol
cleavage with Pb(OAc), then gave 13 (86%). Next, the
vinyl iodide was introduced (E:Z=96:4) by Takai
olefination'® using CHI; and CrCl,, followed by deben-
zylation (BCl;-SMe,)!! and Dess—Martin oxidation to
produce aldehyde 10 (67% from 13). Using (-)-Ipc,BClI
and Et;N,!? the aldol addition of acetone to 10 pro-
ceeded with >97% ds to give 1,3-syn adduct 14 (99%).
As expected,®® the moderate 1,3-stereoinduction from
the B-siloxy aldehyde 10 is reinforced here by the chiral
boron reagent. Protection as the PMB ether then gave

the required C,,—C,s subunit 6 (80%). The enal 9,
incorporating C,s—C,,, was obtained using the comple-
mentary syn aldol chemistry®®< of the ketone 15, having
a benzyl ether in place of the benzoate. Thus, the
syn-configured aldehyde 16 was readily prepared from
the aldol adduct 17, followed by chain extension** to
produce 9 (91%). The final C,;—C,, subunit, i.e. methyl
ketone 8, was obtained in 95% ee by Brown allybora-
tion of aldehyde 18 wusing B-allylbis(2-iso-
caranyl)borane,'® followed by PMB protection and
Wacker oxidation of the alkene.

The controlled aldol coupling of the three subunits,
followed by suitable manipulation was now addressed.
In the first 1,5-anti coupling step between equimolar
amounts of 8 and 9 (Scheme 3), use of ¢-Hex,BCl and
Et;N led, after oxidative work-up, to the adduct 19
with 95% ds in 86% yield. By combining this step with
an in situ reduction®!* of the intermediate dicyclo-
hexylboron aldolate using LiBH,, the C,; and C,;
stereocentres could be introduced efficiently, generating
the 1,3-syn diol 20 (95% ds) in 90% yield. The C,s
configuration was established as (R) by '"H NMR spec-
troscopy (through use of the advanced Mosher
method!® on the (R)- and (S)-MTPA esters of 19),
while that at C,5 was determined in turn by '*C NMR
analysis'® of the acetonide 21. Selective deprotection of
the primary TBS ether in 21 with TBAF was then
followed by Swern oxidation to give aldehyde 7 (93%).
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Scheme 1. Retrosynthetic analysis based on identification of 1,5-anti stereorelationships in 2.
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Scheme 2. Reagents and conditions: (a) ¢-Hex,BCl, Me,NEt, Et,0, 0°C, 2 h; BnOCH,CH,CHO, -78—-20°C, 16 h; H,0,,
MeOH, pH 7 buffer; (b) TIPSOTT, 2,6-lutidine, CH,Cl,, -78—0°C, 3 h; (¢) LiAIH,, -78—0°C, 3 h; (d) Pb(OAc),, Na,CO;,
CH,Cl,, 0.5 h; (e) CHI;, CrCl,, THF, dioxane, 8 h; (f) BCl;-SMe,, CH,Cl,, 45 min; (g) Dess—Martin periodinane, CH,Cl,, 1-3
h; (h) Me,CO, (-)-Ipc,BCl, Et;N, Et,0, 0°C, 35 min; 10, -78°C, 1 h; H,0,, MeOH, pH 7 buffer; (i) PMB-TCA, cat TfOH, Et,0,
0°C, 3 h; (j) c-Hex,BCl, Et;N, Et,0, -78 >0°C, 80 min; i-PrCHO, -78—>-20°C, 16 h; H,0,, MeOH, pH 7 buffer; (k) TBSOTHT,
2,6-lutidine, CH,Cl,, —=78°C, 1 h; (1) H,, Pd(OH),/C, EtOAc, 1 h; (m) NalO,, aq. MeOH, 40 min; (n) Ph,P=CHCO,Me, MeCN,
84°C, 20 h; (o) DIBAL, Et,0, -78—-20°C, 1.5 h; (p) (2-YIcr),Ballyl, Et,0, —-78°C, 3 h; H,0,, NaOH; (q) PMB-TCA,

Ph,CBF,, THF, 0°C, 16 h; (r) PdCl,, CuCl, O,, aq. DMF, 25 h.
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Scheme 3. Reagents and conditions: (a) ¢c-Hex,BCl, Et;N, Et,O,

0°C, 10 min; 9, -78>-20°C, 18 h; H,0,, MeOH, pH 7 bufter;

(b) ¢-Hex,BCl, ELN, Et,0, 0°C, 10 min; 9, ~78—-20°C, 18 h; LiBH,, 2 h; H,0,, MeOH, pH 7 buffer; (c) (MeO),CMe,, PPTS,
CH,CL, 16 h; (d) TBAF, THF, 1.5 h; (¢) (COCI),, DMSO, CH,Cl,, —78°C, 30 min; Et;N, —780°C, 1 h.

In the more challenging, second 1,5-anti aldol coupling
(Scheme 4), enolisation of ketone 6 with ¢-Hex,BCI and
Et;N, followed by addition of aldehyde 7, gave the
desired adduct 22 (75% ds), along with 19-epi-22. After
chromatographic separation, the major adduct 22 was
isolated in 53% yield. By treatment of each of the aldol
products with DDQ, the formation of the correspond-
ing PMP acetals, with concomitant deprotection of the
C,5s PMB ether, was achieved.!” Subsequent NOE anal-
ysis of 23, along with the 19-epi system 24, enabled the
unambiguous assignment of the C,, configuration aris-

ing from the aldol coupling. In the analogous reaction
of methyl ketone 6 with the simple aldehyde 25, the
1,5-anti adduct 26 was obtained in 69% ds, while alde-
hyde 7 showed low selectivity (61% ds) in reaction with
the dicyclohexylboron enolate of acetone. Therefore, we
attribute the moderate 75% ds achieved in the forma-
tion of 22 (cf. 9+10—19 in 95% ds) to a reduced level of
1,5-stereoinduction from the ketone component 6 (as
opposed to a mismatched coupling situation). This may
be a consequence of steric congestion, arising from the
bulky C,; TIPS ether, adversely affecting the conforma-
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Scheme 4. Reagents and conditions: (a) ¢-Hex,BCl, Et;N, Et,0, 0°C, 10 min; 7 or 25, -78—-20°C, 16 h; H,O,, MeOH, pH 7
buffer; (b) DDQ, CH,Cl,, pH 7 buffer, 6 h; (¢) Me,NBH(OAc);, MeCN, AcOH, -30—-20°C, 18 h; (d) (MeO),CMe,, PPTS,

CH,CL, 15 h.

tion of the sterecodirecting PMB ether at C,;5. In com-
parison, the corresponding lithium and Mukaiyama
aldol reactions of 6 with 7 gave much poorer stereose-
lectivity for 22.

Finally, a hydroxyl-directed reduction of aldol adduct
22, employing Me,NBH(OAc),,'® led to the 1,3-anti
diol 27 with 96% ds, which was transformed into the
bis-acetonide 28 in 81% overall yield (allowing confir-
mation of the stereochemistry by *C NMR analysis'¢).
This contains all ten stereocentres of the 1,3-polyol
sequence of (+)-roxaticin, with a vinyl iodide appended
at C,, for a subsequent Pd-mediated coupling to intro-
duce the polyene unit and close the macrolide ring.

In summary, the asymmetric synthesis of bis-acetonide
2, corresponding to the fully protected 1,3-polyol
sequence for (+)-roxaticin (1) and containing all ten
stereocentres, has been achieved in 15 steps and high
overall yield (24.0%) from ketone 15 (three steps from
ethyl (S)-lactate®®). By exploiting the 1,5-anti boron
aldol coupling protocol, a convergent synthesis using
equimolar amounts of the individual subunits 6, 8 and
9 was realised. Further studies are underway to explore
the generality and origin of these, and other, remote
induction effects in boron aldol reactions.'’
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